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2-5 The Calculus of Scalar and  
Vector Fields (pp.33-55) 
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Q:  
 
A: HO: The Gradient Operator in Coordinate 
Systems 
 
Q: The gradient of every scalar field is a vector 
field—does this mean every vector field is the gradient 
of some scalar field?  
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C. Helmholtz’s Theorems 
 
 
 

( ) ( )and/orr r∇ ⋅ ∇×A A  
 

Q:  
 
 
A:  HO: Helmholtz’s Theorems 
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The Gradient 
 
Consider the topography of  the Earth’s surface.   
 
 
 
 
 
 
 
We use contours of constant elevation—called topographic 
contours—to express on maps (a 2-dimensional graphic) the 
third dimension of elevation (i.e., surface height).  
 
We can infer from these maps the slope of the Earth’s surface, 
as topographic contours lie closer together where the surface is 
very steep. 
 
 
 
 
 
 
 
 
 
Moreover, we can likewise infer the direction of these slopes—a 
hillside might slope toward the south, or a cliff might drop-off 
toward the East. 

From: erg.usgs.gov/isb/pubs/booklets/symbols/reading.html 

See, this indicates 
the location of a 
steep and scary Cliff! 
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Thus, the slope of the Earth’s surface has both a magnitude 
(e.g., flat or steep) and a direction (e.g. toward the north).  In 
other words, the slope of the Earth’s surface is a vector 
quantity!  
 
Thus, the surface slope at every point across some section of 
the Earth (e.g.,  Douglas County, Colorado, or North America) 
must be described by a vector field! 
 
 
 
 
 
 
A:  Yes, there is a very easy way, called the gradient. 
 
Say the topography of some small section of the Earth’s 
surface can be described as a scalar function ( ),h x y , where h 
represents the height (elevation) of the Earth at some point 
denoted by coordinates x and y.  E.G.: 

Q: Sure, but there isn’t 
any way to calculate this 
vector field is there? 
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Now say we take the gradient of scalar field h(x,y).  We denote 
this operation as: 
 

( )h r∇  
 

The result of taking the gradient of a scalar field is a vector 
field, i.e.: 
 

( ) ( )h r r∇ = A  
  
 
 
 
 
 
 
For our example here, taking the gradient of surface elevation 
h(x,y) results in the following vector field: 
 

Q: So just what is this 
resulting vector field, and 
how does it relate to 
scalar field ( )h r ?? 
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To see how this vector field relates to the surface height 
h(x,y), let’s place the vector field on top of the topographic 
plot: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: That’s right! The gradient of a scalar field provides a vector 
field that states how the scalar value is changing throughout 
space—a change that has both a magnitude and direction.  
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Q: It appears that the vector 
field indicates the slope of the 
surface topology—both its 
magnitude and direction! 
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It is a bit more “natural” and instructive for our example to 
examine the opposite of the gradient of h(x,y) (i.e., 
( ) ( )r h r= −∇A ).  In other words, to plot the vectors such that 

they are pointing in the “downhill” direction.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note these important facts: 
 
*  The vectors point in the direction of maximum change (i.e., 
they point straight down the mountain!). 
 
*   The vectors always point orthogonal to the topographic 
contours (i.e., the contours of equal surface height). 
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Now, it is important to understand that the scalar fields we will 
consider will not typically describe the height or altitude of 
anything!  Thus, the slope provided by the gradient is more 
mathematically “abstract”, in the same way we speak about the 
slope (i.e., derivative) of some curve. 
 
For example, consider the relative humidity across the 
country—a scalar function of position. 
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If we travel in some directions, we will find that the humidity 
quickly changes.  But if we travel in other directions, the 
humidity will change not at all. 
 

Q: Say we are located at some point (e.g., Lawrence, 
KS; Albuquerque, N M; or Ann Arbor, MI), how can we 
determine the direction where we will experience the 
greatest change in humidity ?? Also, how can we 
determine what that change will be ?? 
 
A:  The answer to both questions is to take the 
gradient of the scalar field that represents humidity! 
 

If ( )rg  is the scalar field that represents the humidity 
across the country, then we can form a vector field ( )rH by 
taking the gradient of ( )rg : 
 

( ) ( )r rg= ∇H  
 

This vector field indicates the direction of greatest 
humidity change (i.e., the direction where the derivative is 
the largest), as well as the magnitude of that change, at 
every point in the country! 
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This is likewise true for any scalar field.  The gradient of a 
scalar field produces a vector field indicating the direction 
of greatest change (i.e., largest derivative) as well as the 
magnitude of that change, at every point in space. 
 

( ) ( )r g r= ∇H
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The Gradient Operator in 
Coordinate Systems 

 
For the Cartesian coordinate system, the Gradient of a 
scalar field is expressed as:  
 

 

( ) ( ) ( ) ( )ˆ ˆ ˆx y z
g r g r g rg r a a a

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

 
 
Now let’s consider the gradient operator in the other 
coordinate systems. 
 
Q: Pfft! This is easy! The gradient operator in the 
spherical coordinate system is: 
 

( ) ( ) ( ) ( )ˆ ˆ ˆr r r
r r

g g gg a a a
r θ φθ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

Right ?? 
 
A: NO!! The above equation is not correct! 

 
Instead, we find that for spherical coordinates, the gradient is 
expressed as: 
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( ) ( ) ( ) ( )ˆ ˆ ˆr r r1 1r
sinr

g g gg a a a
r r rθ φθ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

 
 

 
And for the cylindrical coordinate system we likewise get: 
 
 

( ) ( ) ( ) ( )ˆ ˆ ˆr r r1r z
g g gg a a a

zρ φρ ρ φ
∂ ∂ ∂

∇ = + +
∂ ∂ ∂
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The Conservative  
Vector Field 

 
Of all possible vector fields ( )rA , there is a subset of vector 
fields called conservative fields. A conservative vector field is 
a vector field that can be expressed as the gradient of some 
scalar field ( )rg : 

( ) ( )r rg= ∇C  
 

In other words, the gradient of any scalar field always results 
in a conservative field ! 
 
As we discussed earlier, a conservative field has the interesting 
property that its line integral is dependent on the beginning and 
ending points of the contour only!  In other words, for the two 
contours: 
 
 
 
 
 
 
 
 
 
we find that: 
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( ) ( )

1 2C C
r d r d⋅ = ⋅∫ ∫C C  

 
We therefore say that the line integral of a conservative field 
is path independent. 

 
This path independence is evident when considering the integral 
identity: 

( ) ( ) ( )B A
C

g r d g r g r∇ ⋅ = −∫  

where position vector Br  denotes the ending point (PB) of 
contour C, and Ar  denotes the beginning point (PA).   Likewise, 
( )Bg r  denotes the value of scalar field ( )g r  evaluated at the 

point denoted by Br , and ( )Ag r  denotes the value of scalar field 
( )g r  evaluated at the point denoted by Ar . 

Note for one dimension, the above identity simply reduces to 
the familiar expression: 

( ) ( ) ( )
b

a

x

b a
x

g x dx g x g x
x

∂
= −

∂∫  

Since every conservative field can be written in terms of the 
gradient of a scalar field, we can use this identity to conclude: 

 

( )

( ) ( )B A

( ) r

r r
C C

r d g d

g g

C ⋅ = ∇ ⋅

= −

∫ ∫
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Thus, the line integral only depends on the value ( )g r  at the 
beginning and end points of a contour, the path taken to 
connect these points makes no difference! 

Consider then what happens then if we integrate over a closed 
contour.   

Q: What the heck is a closed contour ?? 

A:  A closed contour is a contour whose beginning and 
ending is the same point!  E.G., 

 

 

 

 
 

*  A contour that is not closed is refered to as an open contour. 

*  Integration over a closed contour is denoted as: 

( ) ⋅∫
C

drA  

* The integration of a conservative field over a closed contour 
is therefore: 

( ) ( )

( ) ( )

⋅ = ∇ ⋅

= −

=

∫ ∫
C C

d g d

g gB A

r r

r r
0

C

 

PA PB 
Closed 
Contour C 
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This result is due to the fact that =A Br r , therefore; 

( ) ( )=A Bg r g r  

and thus the subtraction of these two values is always zero! 

 

Let’s summarize what we know about a conservative vector 
field: 

 

1. A conservative vector field can always be expressed 
as the gradient of a scalar field. 

2. The gradient of any scalar field is therefore a  
conservative vector field. 

3. Integration over an open contour is dependent only 
on the value  of  scalar field ( )g r  at the beginning 
and ending points of the contour (i.e., integration is 
path independent). 

4. Integration of a conservative vector field over any 
closed contour is always equal to zero. 
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Example: Line Integrals of 
Conservative Fields 

 
Consider the vector field ( )2 2( )r x y z= ∇ +A  .   
 
Evaluate the contour integral: 
 

( )
C

r d⋅∫ A  

 
where ( )2 2( )r x y z= ∇ +A , and contour C is: 
 
 
 
 
 
 
 
 
The beginning of contour C is the point denoted as: 
 

ˆ ˆ ˆ3 4A x y zr a a a= − +  
 

while the end point is denote with position vector: 
 

= − −ˆ ˆ3 2x zBr a a  

C 

PA 
PB 
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Note that ordinarily, this would be an impossible problem for us 
to do! 
 
But, we note that vector field ( )rA  is conservative, therefore: 
 

( )

( ) ( )B A

( ) r

r r
C C

r d g d

g g

A ⋅ = ∇ ⋅

= −

∫ ∫
 

 
For this problem, it is evident that: 
 

( )2 2( )g r x y z= +  
 

Therefore, ( )Ag r  is the scalar field evaluated at x = 3, y = -1, z 
= 4; while ( )Bg r  is the scalar field evaluated at at x = -3, y = 0, 
z = -2. 

( ) ( )( )2 2( ) 3 1 4 40Ag r = + − =  
 

( ) ( )( )( )2 2( ) 3 0 2 18Bg r = − + − = −  
 

Therefore: 
 

( )

( ) ( )B A

( ) r

r r
18 40
58

C C
r d g d

g g

A ⋅ = ∇ ⋅

= −

= − −

= −

∫ ∫
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 The Divergence of a 
Vector Field 

 
The mathematical definition of divergence is: 
 

( )
( )

∆ →

⋅
∇ ⋅ =

∆

∫∫
S

v

ds

v0

r
r lim

A
A  

 
where the surface S is a closed surface that completely 
surrounds a very small volume v∆  at point r , and where ds  
points outward from the closed surface.   
 
From the definition of surface integral, we see that divergence 
basically indicates the amount of vector field ( )rA  that is 
converging to, or diverging from, a given point. 
 
For example, consider these vector fields in the region of a 
specific point: 
 

 
 
 
 
 
 
 
 ( )r 0∇ ⋅ >A  ( )r 0∇ ⋅ <A

v∆v∆
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The field on the left is converging to a point, and therefore the 
divergence of the vector field at that point is negative.  
Conversely, the vector field on the right is diverging from a 
point.  As a result, the divergence of the vector field at that 
point is greater than zero.   
 
Consider some other vector fields in the region of a specific 
point: 
 
  
 
 
 
 
 
 
 
For each of these vector fields, the surface integral is zero.  
Over some portions of the surface, the normal component is 
positive, whereas on other portions, the normal component is 
negative.  However, integration over the entire surface is equal 
to zero—the divergence of the vector field at this point is zero.   
 
*  Generally, the divergence of a vector field results in a scalar 
field (divergence) that is positive in some regions in space, 
negative other regions, and zero elsewhere. 
 
*  For most physical problems, the divergence of a vector field 
provides a scalar field that represents the sources of the 
vector field.  

( )r 0∇ ⋅ =A ( )r 0∇ ⋅ =A
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For example, consider this two-dimensional vector field ( , )x yA , 
plotted on the x,y plane: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can take the divergence of this vector field, resulting in the 
scalar field ( , ) ( , )g x y x y= ∇ ⋅A .  Plotting this scalar function on 
the x,y  plane: 
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Both plots indicate that the divergence is largest in the vicinity 
of  point x=-1, y=1.  However, notice that the value of g(x,y) is 
non-zero (both positive and negative) for most points (x,y). 
 
Consider now this vector field: 
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The divergence of this vector field is the scalar field: 
 
 
 
 
 
 
 
 
 
 
 
 
Combining the vector field and scalar field plots, we can 
examine the relationship between each: 
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Look closely! Although the relationship between the scalar field 
and the vector field may appear at first to be the same as with 
the gradient operator, the two relationships are very different. 
 
Remember: 
 

a) gradient produces a vector field that indicates the 
change in the original scalar field, whereas: 

b)  divergence produces a scalar field that indicates some 
change (i.e., divergence or convergence) of the original 
vector field. 

 
The divergence of this vector field is interesting—it steadily 
increases as we move away from the y-axis. 
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Yet, the divergence of this vector field produces a scalar field 
equal to one—everywhere (i.e., a constant scalar field)! 
 
 
 
 
 
 
 
 
 
 
 
Likewise, note the divergence of these vector fields—it is zero 
at all points (x,y); 
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Although the examples we have examined here were all two-
dimensional, keep in mind that both the original vector field, as 
well as the scalar field produced by divergence, will typically be 
three-dimensional! 

 

( , ) 0x y∇ ⋅ =A
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The Divergence in  
Coordinate Systems 

 
Consider now the divergence of vector fields expressed with 
our coordinate systems: 
 
Cartesian 
 

 

( ) ( ) ( ) ( )r yx zA rA r A r
x y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
A  

 
Cylindrical 
 

 

( )
( )( ) ( ) ( )1 1 zA r A r A rr

z
ρ φρ

ρ ρ ρ φ

⎡ ⎤∂ ∂ ∂
∇ ⋅ = + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
A  

 
Spherical 
 
 

( )
( )( ) ( )( ) ( )2

2

sin1 1 1
sin sin

rr A r A rA r
r

r r r r
φθθ

θ θ θ φ

∂ ∂∂
∇ ⋅ = + +

∂ ∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A  
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 Note that, as with the gradient expression, the divergence 
expressions for cylindrical and spherical coordinate systems are 
more complex than those of Cartesian.  Be careful when you use 
these expressions! 
 
For example, consider the vector field: 
 

( ) sinr ˆ ra
r
θ

=A  

 
Therefore, 0 and 0A Aθ φ= = , leaving: 
 

( ) ( )( )

( )

[ ]

2

2

2

2

2

2

2

1r

1

1

1 sin

sin

sin

sin

rA
r r

r r

r r

r

r r

r r
r

r
θ

θ

θ

θ

∂⎡ ⎤∇ ⋅ = ⎢ ⎥∂⎣ ⎦
⎡ ⎤⎛ ⎞∂

= ⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦
=

= =

A
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The Divergence Theorem 
 
Recall we studied volume integrals of the form: 
 

( )
V

g r dv∫∫∫  

 

It turns out that any and every scalar field can be written as 
the divergence of some vector field, i.e.: 
 

( ) ( )g r r= ∇ ⋅A  
 

Therefore we can equivalently write any volume integral as: 
 

( )r
V

dv∇ ⋅∫∫∫ A  

 

The divergence theorem states that this integral is equal to: 
 
 

( ) ( )∇ ⋅ = ⋅∫∫∫ ∫∫
V S

dv dsr rA A  

 
 

where S is the closed surface that completely surrounds volume 
V, and vector ds  points outward from the closed surface.  For 
example, if volume V is a sphere, then S is the surface of that 
sphere. 
 
The divergence theorem states that the volume integral of a 
scalar field can be likewise evaluated as a surface integral of a 
vector field!  
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What the divergence theorem indicates is that the total 
“divergence” of a vector field through the surface of any 
volume is equal to the sum (i.e., integration) of the divergence at 
all points within the volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In other words, if the vector field is diverging from some point 
in the volume, it must simultaneously be converging to another 
adjacent point within the volume—the net effect is therefore 
zero! 
 
Thus, the only values that make any difference in the volume 
integral are the divergence or convergence of the vector field 
across the surface surrounding the volume—vectors that will be 
converging or diverging  to adjacent points outside the volume 
(across the surface) from points inside the volume. Since these 
points just outside the volume are not included in the 
integration, their net effect is non-zero! 
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The Curl of a Vector Field 
 
Say ( ) ( )x r r∇ =A B . The mathematical definition of Curl is given 
as: 
 

( )
( )

0

r
r lim iC

i s i

d
B

s∆ →

⋅

=
∆

∫A
 

 
 
 

This rather complex equation requires some explanation ! 
 
*  ( )riB  is the scalar component of vector ( )rB  in the direction 
defined by unit vector îa  (e.g., ˆ ˆ ˆ, ,xa a aρ θ ). 
 
*  The small surface is∆  is centered at point r , and oriented 
such that it is normal to unit vector îa . 
 
*  The contour Ci is the closed contour that surrounds surface 

is∆ . 
 
 
 
 

Ci 

is∆

ˆ ia

r  
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Note that this derivation must be completed for each of the 
three orthonormal base vectors in order to completely define 
( ) ( )r x r= ∇B A . 

 
Q:  What does curl tell us ? 
 
A:   Curl is a measurement of the circulation of vector 
field ( )rA  around point r .   
 

If a component of vector field ( )rA is pointing in the direction 
d  at every point on contour Ci (i.e., tangential to the contour).  
Then the line integral, and thus the curl, will be positive. 
 
If, however, a component of vector field ( )rA  points in the 
opposite direction (-d ) at every  point on the contour, the curl 
at point r  will be negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Likewise, these vector fields will result in a curl with zero value 
at point r :

0iB >  
0iB <
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*  Generally, the curl of a vector field result is in another 
vector field whose magnitude is positive in some regions of 
space, negative in other regions, and zero elsewhere. 
 
*  For most physical problems, the curl of a vector field  
provides another vector field that indicates rotational sources 
(i.e., “paddle wheels” ) of the original vector field. 
 
For example, consider this vector field ( )rA : 
 
 
 
 
 
 

0iB = 0iB =

x 
y 

-4 - 2 0 2 4

-4

-2

0

2

4
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If we take the curl of ( )rA , we get a vector field which points 
in the direction ẑa  at all points (x,y).  The scalar component of 
this resulting vector field (i.e., Bz(r )) is: 
 
 
 
  
 
 
 
 
 
 
 
The relationship between the original vector field ( )rA  and its 
resulting curl perhaps is best shown when plotting both 
together: 
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Note this scalar component is largest in the region near point 
x=-1, y=1, indicating a “rotational source” in this region.   This is 
likewise apparent from the original plot of vector field ( )rA . 
 
Consider now another vector field: 
 
 
 
 
 
 
 
 
 
 
 
 
Although at first this vector field appears to exhibit no 
rotation, it in fact has a non-zero curl at every point 
( ˆ( ) 4.0 zr =B a ) ! Again, the direction of the resulting field is in 
the direction ẑa . We plot therefore the scalar component in 
this direction (i.e., ( )zB r ):

x y 
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We might encounter a more complex vector field, such as: 
 
 
 
 
 
 
 
 
 
 
 
If we take the curl of this vector field, the resulting vector 
field will again point in the direction ẑa  at every point (i.e., 

( ) ( ) 0x yB r B r= = ).  Plotting therefore the scalar component of 
the resulting vector field (i.e., ( )zB r ), we get: 
 
 
 
 
 
 
 
 
 
 
 
Note these plots indicate that there are two regions of large 
counter clockwise rotation in the original vector field, and one 
region of large clockwise rotation.   
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Finally, consider these vector fields: 
 
 
 
 
 
 
 
 
 
 
 
The curl of these vector fields is zero at all points.  It is 
apparent that there is no rotation in either of these vector 
fields! 
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Curl in Coordinate Systems 
 
Consider now the curl of vector fields expressed using our 
coordinate systems. 
 
Cartesian 
 
 

( ) ( ) ( )

( ) ( )

( ) ( )

ˆ

ˆ

ˆ

x r y z
x

z x
y

yx
z

A r A r a
z y

A r A r a
x z

A rA r a
y x

∂⎡ ⎤∂
∇ = −⎢ ⎥∂ ∂⎣ ⎦

∂ ∂⎡ ⎤
+ −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤∂
+ −⎢ ⎥

∂ ∂⎣ ⎦

A

 

 
 
Cylindrical 
 
 

( ) ( ) ( )

( ) ( )

( )( ) ( )

ˆ

ˆ

ˆ

1x

1 1

z

z

z

A rA rr a
z

A r A r a
z

A r
A r a

φ
ρ

ρ
φ

ρ
φ

ρ φ

ρ

ρ
ρ ρ ρ φ

∂⎡ ⎤∂
∇ = −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤∂
+ −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤∂
+ −⎢ ⎥∂ ∂⎣ ⎦

A
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Spherical 
 
 

( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )

ˆ

ˆ

ˆ

1 1x sin
sin sin

1 1
rsin

1 1

r

r

r

A rr A r a
r r

A r r A r a
r r

A rrA r a
r r r

θ
φ

φ θ

θ φ

θ
θ θ θ φ

θ φ

θ

∂⎡ ⎤∂
∇ = −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤∂
+ −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤∂
+ −⎢ ⎥∂ ∂⎣ ⎦

A

 

 
 
 

Yikes! These expressions are very complex.  Precision, 
organization, and patience are required to correctly evaluate 
the curl of a vector field ! 
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Stokes’ Theorem 
 
Consider a vector field ( )rB  where: 
 

( ) ( )r x r= ∇B A  
 

Say we wish to integrate this vector field over an open surface 
S: 
 

( ) ( )r x r
S S

ds ds⋅ = ∇ ⋅∫∫ ∫∫B A  

 
We can likewise evaluate this integral using Stokes’ Theorem: 
 
 

( ) ( )x r r
S C

ds d∇ ⋅ = ⋅∫∫ ∫A A  

 
 
In this case, the contour C is a closed contour that surrounds 
surface S. The direction of C is defined by ds  and the right -
hand rule.  In other words C rotates counter clockwise around 
ds .  E.G., 

S 

C 

ds
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*  Stokes’ Theorem allows us to evaluate the surface integral of 
a curl as simply a contour integral ! 
 
*  Stokes’ Theorem states that the summation (i.e., integration) 
of the circulation at every point on a surface is simply the total 
“circulation” around the closed contour surrounding the surface. 
 
 
 
 
 
 
 
 
 
 
 
 
In other words, if the vector field is rotating counter-
clockwise around some point in the volume, it must 
simultaneously be rotating clockwise around adjacent points 
within the volume—the net effect is therefore zero! 
 
Thus, the only values that make any difference in the surface 
integral is the rotation of the vector field around points that lie 
on the surrounding contour (i.e., the very edge of the surface 
S). These vectors are likewise rotating in the opposite direction 
around adjacent points—but these points do not lie on the 
surface (thus, they are not included in the integration).  The net 
effect is therefore non-zero! 

-4 - 2 0 2 4

-4
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Note that if S is a closed surface, then there is no contour C 
that exists!  In other words: 
 
 

( ) ( )
0

x r r 0
S

ds d∇ ⋅ = ⋅ =∫∫ ∫A A  

 
 

Therefore, integrating the curl of any vector field over a 
closed surface always equals zero. 
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The Curl of  
Conservative Fields 

 
Recall that every conservative field can be written as the 
gradient of some scalar field: 
 

( ) ( )r rg= ∇C  
 
Consider now the curl of a conservative field: 
 

( ) ( )x r x g r∇ = ∇ ∇C  
 

Recall that if ( )rC  is expressed using the Cartesian coordinate 
system, the curl of ( )rC  is: 
 

( )x r ˆ ˆ ˆy yz x z x
x y z

C CC C C Ca a a
y z z x x y

∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤∇ = − + − + −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦ ⎣ ⎦
C  

 
Likewise, the gradient of ( )rg  is: 
 

( ) ( ) ( ) ( ) ( )r r rr r ˆ ˆ ˆx y z
g g gg a a a

x y z
∂ ∂ ∂

∇ = = + +
∂ ∂ ∂

C  
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Therefore: 
 

( ) ( )

( ) ( )

( ) ( )

rr

rr

rr

x

y

z

gC
x

gC
y

gC
z

∂
=

∂
∂

=
∂

∂
=

∂

 

 
Combining these two results: 
 

( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

r rx r

r r

r r

ˆ

ˆ

ˆ

x

y

z

g gg a
y z z y
g g a
z x x z
g g a
x y y x

⎡ ⎤∂ ∂
∇ ∇ = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
+ −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂

+ −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 

 
 Since, for example: 
 

( ) ( )2 2r rg g
y z z y

∂ ∂
=

∂ ∂ ∂ ∂
, 

 
each component of ( )x rg∇ ∇  is then equal to zero, and we can 
say: 
 

( ) ( )x g r x r 0∇ ∇ = ∇ =C  
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The curl of every conservative field is equal to zero ! 
 
Likewise, we have determined that: 
 
 

( )x r 0g∇ ∇ =  
 

 
for all scalar functions ( )g r . 
 
 

Q: Are there some non-conservative fields whose 
curl is also equal to zero? 
 
A:  NO! The curl of a conservative field, and only a 
conservative field, is equal to zero. 

 
 
 
Thus, we have way to test whether some vector field ( )rA  is 
conservative: evaluate its curl! 
 

1. If the result equals zero—the vector field is 
conservative. 

 
2. If the result is non-zero—the vector field is not 

conservative. 
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 Let’s again recap what we’ve learned about conservative fields: 
 

 
 
 
1.   The line integral of a conservative field is path 

independent. 
 
2. Every conservative field can be expressed as the 

gradient of some scalar field. 
 
3. The gradient of any and all scalar fields is a 

conservative field. 
 
4.  The line integral of a conservative field around any 

closed contour is equal to zero. 
 
5.   The curl of every conservative field is equal to zero. 
 
6.   The curl of a vector field is zero only if it is  

conservative. 
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The Solenoidal  
Vector Field 

 
1.  We of course recall that a conservative vector field ( )rC  
can be identified from its curl, which is always equal to zero: 
 

( )x r 0∇ =C  
 

Similarly, there is another type of vector field ( )rS , called a 
solenoidal field, whose divergence is always equal to zero: 
 
 

( )r 0∇ ⋅ =S  
 
 

Moreover, we find that only solenoidal vector have zero 
divergence!  Thus, zero divergence is a test for  determining if 
a given vector field is solenoidal. 
 
We sometimes refer to a solenoidal field as a divergenceless 
field. 
 
2.  Recall that another characteristic of a conservative vector 
field is that it can be expressed as the gradient of some scalar 
field (i.e., ( ) ( )r rg= ∇C ).    
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Solenoidal vector fields have a similar characteristic!  Every 
solenoidal vector field can be expressed as the curl of some 
other vector field (say ( )rA ).   
 
 

( ) ( )r x r= ∇S A  
 
 
Additionally, we find that only  solenoidal vector fields can be 
expressed as the curl of some other vector field. Note this 
means that: 
 
 

The curl of any vector field always results in a 
solenoidal field! 

 
 
Note if we combine these two previous equations, we get a 
vector identity: 
 

( )x r 0∇ ⋅∇ =A  
 
 
a result that is always true for any and every vector field ( )rA .  
 
Note this result is analogous to the identify derived from 
conservative fields: 

( )x r 0g∇ ∇ =  
 

for all scalar fields ( )rg . 
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3.  Now, let’s recall the divergence theorem: 
 

( ) ( )∇ ⋅ = ⋅∫∫∫ ∫∫
V S

dv dsr rA A  

 
If the vector field ( )rA  is solenoidal, we can write this 
theorem as: 

( ) ( )r r
V S

dv ds∇ ⋅ = ⋅∫∫∫ ∫∫S S  

 
But of course, the divergence of a solenoidal field is zero 
( ( )r 0∇ ⋅ =S )! 
 
As a result, the left side of the divergence theorem is zero, and 
we can conclude that: 
 
 

( )r 0
S

ds⋅ =∫∫S  

 
 

In other words the surface integral of any and every solenoidal 
vector field across a closed surface is equal to zero. 
 
Note this result is analogous to evaluating a line integral of a 
conservative field over a closed contour 
 

( )r 0
C

d⋅ =∫ C  
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Lets summarize what we know about solenoidal vector fields: 
 
 

1. Every solenoidal field can be expressed as the 
curl of some other vector field. 

 
2. The curl of any and all vector fields always 

results in a solenoidal vector field. 
 
3. The surface integral of a solenoidal field across 

any closed surface is equal to zero. 
 

4.  The divergence of every solenoidal vector field is 
equal to zero. 

 
5.  The divergence of a vector field is zero only if it 

is solenoidal. 
 
 

 
 
 

 
 

 
 
 
 
 
 



9/21/2004 The Laplacian.doc 1/2 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Laplacian 
 
Another differential operator used in electromagnetics is the 
Laplacian operator.  There is both a scalar Laplacian operator, 
and a vector Laplacian operator.  Both operations, however, are 
expressed in terms of derivative operations that we have 
already studied ! 
 
The Scalar Laplacian 
 
The scalar Laplacian is simply the divergence of the gradient of 
a scalar field: 

( )rg∇ ⋅∇  
 

The scalar Laplacian therefore both operates on a scalar field 
and results in a scalar field. 
 
Often, the Laplacian is denoted as “ 2∇ ”, i.e.: 
 

( ) ( )2 r rg g∇ ∇ ⋅ ∇  
 

From the expressions of divergence and gradient, we find that 
the scalar Laplacian is expressed in Cartesian coordinates as: 
 
 

( ) ( ) ( ) ( )2 2 2
2

2 2 2
r r rr g g gg

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂
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The scalar Laplacian can likewise be expressed in cylindrical and 
spherical coordinates; results given on page 53 of your book. 
 
The Vector Laplacian 
 
The vector Laplacian, denoted as ( )2 r∇ A , both operates on a 
vector field and results in a vector field, and is defined as: 
 
 

( ) ( )( ) ( )2 r r x x r∇ ∇ ∇ ⋅ − ∇ ∇A A A  
 

 
Q:  Yikes!  Why the heck is this mess referred to as the 
Laplacian ?!? 
 
A:    If we evaluate the above expression for a vector 
expressed in the Cartesian coordinate system, we find that 
the vector Laplacian is: 
 
 

( ) ( ) ( ) ( )2 2 2 2r r r rˆ ˆ ˆx x y y z zA a A a A a∇ = ∇ + ∇ + ∇A  
 
 

In other words, we evaluate the vector Laplacian by evaluating 
the scalar Laplacian of each Cartesian scalar component! 
 
However, expressing the vector Laplacian in the cylindrical or 
spherical coordinate systems is not so straightforward—use 
instead the definition shown above! 
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Helmholtz’s Theorems 
 
Consider a differential equation of the following form: 
 

( ) ( )d f tg t
dt

=  

 
where g (t) is an explicit known function, and f (t) is the 
unknown function that we seek. 
 
For example, the differential equation : 
 

2 ( )3 1 d f tt t
dt

+ − =  

 
has a solution: 
 

2
3( )

2
tf t t t c= + − +  

 
Thus, the derivative of f (t) provides sufficient knowledge to 
determine the original function f (t) (to within a constant).   
 
An interesting question, therefore, is whether knowledge of the 
divergence and or curl of a vector field is sufficient to 
determine the original vector field. 
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For example, say we don’t know the expression for vector field 
( )rA , but we do know its divergence is some scalar function 
( )g r : 

( ) ( )r g r∇ ⋅ =A  
 

Can we, then, determine the vector field ( )rA  ?  For example, 
can ( )rA  be determined from the expression: 
 

2 3( ) ( )r x y z∇ ⋅ = −A    ?? 
 

On the other hand, perhaps the knowledge of the curl is 
sufficient to find ( )rA , i.e.: 
 

( )2ˆ ˆ ˆ× ( ) cos ( 6)
x y

x y z
zr a x a e a
y
π −

∇ = + − +A  

therefore ( )rA =???? 
 
It turns out that neither the knowledge of the divergence nor 
the knowledge of the curl alone is sufficient to determine a 
vector field. However, knowledge of both the curl and 
divergence of a vector field is sufficient! 
 
 Take this tip from me!  

 
If you know ( )r∇ ⋅A  and you 
know ( )x r∇ A , you have enough 
information to determine the 
vector field ( )rA ! 
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Q: But why do we need knowledge of both the divergence and 
curl of a vector field in order to determine the vector field? 
 
 
 
 
 
 
 
 
 
 
 
That’s correct! Any and every possible vector field ( )rA  can be 
expressed as the sum of a conservative field ( ( )rAC ) and a 
solenoidal field ( ( )rAS ) : 
 
 

( ) ( ) ( )r r rA A= +A C S  
 
 

Note then if ( )r 0A =C , the vector field ( ) ( )r rA=A S  is 
solenoidal.  Likewise, if ( )r 0A =S  the vector field 
( ) ( )r rA=A C  is conservative.  

 
Of course, if neither term is zero (i.e., ( )r 0A ≠C  and 

( )r 0A ≠S ), the vector field ( )rA  is neither conservative nor 
solenoidal! 

A: I know the answer to 
that as well! 
 
Its because every vector 
field can be written as the 
sum of a conservative field 
and a  solenoidal field! 
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Consider then what happens when we take the divergence of a 
vector field ( )rA : 
 

( ) ( ) ( )
( )
( )

r r r
r 0
r

A A

A

A

∇ ⋅ = ∇ ⋅ + ∇ ⋅

= ∇ ⋅ +

= ∇ ⋅

A C S
C
C

 

 
Look what happened!  Since the divergence of a solenoidal field 
is zero, the divergence of a general vector field ( )rA   really 
just tells us the divergence of its conservative component. 
 

The divergence of a vector field tells us nothing about 
its solenoidal component ( )rAS ! 
 

Thus, from ( )r∇ ⋅A  we can determine ( )rAC , but we haven’t 
a clue about what ( )rAS  is! 
 
Likewise, the curl of ( )rA  is: 
 

( ) ( ) ( )
( )

( )

x r x r x r
0 x r

x r

A A

A

A

∇ = ∇ + ∇

= + ∇

= ∇

A C S
S

S
 

 
Look what happened!  Since the curl of a conservative field is 
zero, the curl of a general vector field ( )rA   really just tells us 
the curl of its solenoidal component. 
 

The curl of a vector field tells us nothing about its 
conservative component ( )rAC ! 
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Thus, from ( )x r∇ A  we can determine ( )rAS , but we haven’t 
a clue about what ( )rAC  is! 
 
 

CONCLUSION: We require knowledge of both 
( )r∇ ⋅A   (for ( )rAC ) and ( )x r∇ A  (for ( )rAS ) to 

determine the vector field ( )rA . 
 

 
 
From a physical stand point, this makes perfect sense! 
 
Recall that we determined the curl ( )x r∇ A  identifies the 
rotational sources of vector field ( )rA , while the divergence 

( )r∇ ⋅A  identifies the divergent (or convergent) sources.   
 
Once we know the sources of vector field ( )rA , we can of 
course find vector field ( )rA . 
 
Q: Exactly how do we find ( )rA  from its sources ( ( )r∇ ⋅A  and 

( )x r∇ A ) ?? 
 
 
 
 
 
 

A1: I don’t know.
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A2:  Note the sources of a vector field are determined from 
derivative operations (i.e., divergence and curl) on the vector 
field.   
 
We can therefore conclude that a vector field ( )rA  can be 
determined from its sources with integral operations! 
 
 

We’ll learn much more about integrating sources later 
in the course! 


